Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Mar Environ Res ; 196: 106424, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428315

Environmental research plays a crucial role in formulating novel approaches to pollution management and preservation of biodiversity. This study aims to assess the potential harm of pharmaceutical triclosan (TCS) to non-target aquatic organism, the mussel Mytilus galloprovincialis. Furthermore, our study investigates the potential effectiveness of TiO2 and ZnO nanomaterials (TiO2 NPs and ZnO NPs) in degrading TCS. To ascertain the morphology, structure, and stability of the nanomaterials, several chemical techniques were employed. To evaluate the impact of TCS, TiO2 NPs, and ZnO NPs, both physiological (filtration rate (FR) and respiration rate (RR)), antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST)) activities and malondialdehyde (MDA) contents were measured in M. galloprovincialis gills and digestive gland. The mussel's responses varied depending on the contaminant, concentration, and organ, underscoring the significance of compiling these factors in ecotoxicity tests. The main toxic mechanisms of TCS and ZnO NPs at a concentration of 100 µg/L were likely to be a decrease in FR and RR, an increase in oxidative stress, and increased lipid peroxidation. Our findings indicate that a mixture of TCS and NPs has an antagonist effect on the gills and digestive gland. This effect is particularly notable in the case of TCS2 = 100 µg/L combined with TiO2 NP2 = 100 µg/L, which warrants further investigation to determine the underlying mechanism. Additionally, our results suggest that TiO2 NPs are more effective than ZnO NPs at degrading TCS, which may have practical implications for pharmaceutical control in marine ecosystems and in water purification plants. In summary, our study provides valuable information on the impact of pharmaceuticals on non-target organisms and sheds light on potential solutions for their removal from aqueous environments.


Mytilus , Nanoparticles , Triclosan , Water Pollutants, Chemical , Zinc Oxide , Animals , Aquatic Organisms/metabolism , Catalase/metabolism , Ecosystem , Oxidative Stress , Pharmaceutical Preparations , Triclosan/toxicity , Water Pollutants, Chemical/toxicity
2.
J Trace Elem Med Biol ; 83: 127401, 2024 May.
Article En | MEDLINE | ID: mdl-38301314

BACKGROUND: While previous studies have provided insights into the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) on aquatic organisms, there is still a substantial amount of information lacking about the possible effects of their doped counterparts. The goal of the current work was to address this gap by examining Mytilus galloprovincialis reaction to exposure to doped and undoped nanoparticles. METHODS: Two concentrations (50 or 100 µg/L) of undoped ZnO and TiO2 NPs, as well as their gold (Au) doped counterparts, were applied on mussels for 14 days, and the effects on biomarkers activities in digestive glands and gills were assessed by spectrophotometry. RESULTS: The NPs were quasi-spherical in shape (below 100 nm), stable in seawater, and with no aggregation for both doped and undoped forms. Analytical results using inductively coupled plasma atomic emission spectroscopy indicated the uptake of NPs in mussels. Furthermore, it was found that biometal dyshomeostasis could occur following NP treatment and that doping the NPs aggravated this response. At the biochemical level, exposure to undoped NPs caused membrane damage, neurotoxic effect, and changes in the activities in the gills and digestive glands of superoxide dismutase, catalase, and glutathione-S-transferase, in a concentration and organ-dependent manner. CONCLUSION: Doping ZnO NPs and TiO2NPs with Au induced additional oxidative stress, membrane damage, and neurotoxicity in mussels.


Metal Nanoparticles , Mytilus , Nanoparticles , Water Pollutants, Chemical , Zinc Oxide , Animals , Zinc Oxide/toxicity , Gold/toxicity , Nanoparticles/toxicity , Oxidative Stress , Titanium/toxicity , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity
3.
Pestic Biochem Physiol ; 198: 105714, 2024 Jan.
Article En | MEDLINE | ID: mdl-38225063

The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 µg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.


Mytilus , Pesticides , Triclosan , Water Pollutants, Chemical , Animals , Mytilus/metabolism , Antioxidants/pharmacology , Triclosan/toxicity , Acetylcholinesterase/metabolism , Diuron/toxicity , Ecosystem , Oxidative Stress , Biomarkers/metabolism , Pesticides/pharmacology , Water Pollutants, Chemical/toxicity
4.
Mar Pollut Bull ; 193: 115230, 2023 Aug.
Article En | MEDLINE | ID: mdl-37406401

The health status of Mytilus galloprovincialis native from a polluted habitat was surveyed before and after 30 and 60 days of in situ transplantation and in vivo experiments. The results showed a reduction in filtration rate by 24 % and 45 %, respectively, after 60 days of in vivo and in situ experiments compared to the rates at polluted sites. The respiration rate reached a minimum of 0.081 ± 0.05 mg O2.L-1 after 60 days of in situ transplantation. Moreover, the antioxidant activities were changed in a time-dependent manner for both transplantation conditions. The highest superoxide dismutase and catalase activities corresponded to the stressed mussels and declined by 76 % and 54 %, respectively, after 60 days of in situ transplantation. Changes in lipid peroxidation and acetylcholinesterase activity were observed in internal organs following 60 days of transplantation. At this time slot, the lowest content of metals and microplastics was also noticed.


Mytilus , Water Pollutants, Chemical , Animals , Acetylcholinesterase , Decontamination , Plastics , Water Pollutants, Chemical/analysis , Antioxidants , Ecosystem , Biomarkers
5.
Molecules ; 28(6)2023 Mar 08.
Article En | MEDLINE | ID: mdl-36985432

This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction, while a mixture of both contaminants has no effect. In addition, data showed that exposure to P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and digestive glands. A similar trend was also observed in the digestive glands of clams treated with ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic agents against oxidative stress in clams treated with ZnS NPs.


Bivalvia , Metal Nanoparticles , Organophosphonates , Water Pollutants, Chemical , Animals , Catalase/pharmacology , Acetylcholinesterase/pharmacology , Organophosphonates/pharmacology , Antioxidants/pharmacology , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Gills , Biomarkers
6.
Animals (Basel) ; 13(4)2023 Feb 07.
Article En | MEDLINE | ID: mdl-36830370

The effects of pharmaceutical under aquatic biota are still not well established. In this investigation, we assessed the results of a common pharmaceutical's, triclosan (TCS), treatment on physiological and biochemical status of the Mediterranean mussels. Filtration and respiration rates were statistically reduced after treatment with highest considered concentration TCS2 = 100 µg·L-1. However, no modification (p > 0.05) was detected after treatment with TCS1 = 50 µg·L-1. For biochemical responses, oxidative stress parameters including H2O2 level and antioxidant enzymes were enhanced following concentration in considered organs. In parallel, Malondialdheyde content was measured in mussels after TCS treatment and lipid peroxidation occurred at high TCS concentration. Neurotoxicity evaluated by acetylcholinesterase (AChE) activity was induced in gills and digestive glands after exposure to TCS2. Overall, physiological impairment, oxidative stress, lipid peroxidation and neurotoxicity could be induced by triclosan in mussels. The association of physiological and biochemical biomarkers constitute a useful tool to measure the impact of pharmaceuticals in marine organism.

7.
Mar Pollut Bull ; 188: 114641, 2023 Mar.
Article En | MEDLINE | ID: mdl-36706550

The impact of metallic nanoparticles (NPs) on the uptake and toxicity of persistent organic pollutants by marine bivalves was assessed through a comparative laboratory study by exposing mussels to polycyclic aromatic hydrocarbon (PAHs), in the presence and absence of ZnO and TiO2 NPs. PAHs and NPs concentration was analyzed after 14 days of exposure in mussels by GC/MS and ICP/AES. Furthermore, impact on the physiology and neurotoxicity of PAHs and NPs acting alone or in mixtures were also determined. Our results confirmed the bio-uptake of PAHs and NPs by mussels. In addition, the exposure NPs-PAHs resulted in different bio-uptake profile to that of PAHs alone. The NPs and accumulation of PAHs led to disturbance of essential metals concentration and to different impact profiles in the filtration and respiration capacities as well as in the acetylcholinesterase activity. Antagonist interactions between NPs and PAHs could occur after exposure.


Metal Nanoparticles , Mytilus , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Environmental Monitoring/methods , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Acetylcholinesterase
8.
Saudi J Biol Sci ; 28(11): 6365-6374, 2021 Nov.
Article En | MEDLINE | ID: mdl-34764754

The current study investigated the exposure of the Mediterranean mussel (Mytilus galloprovincialis) to gold nanoparticles decorated zinc oxide (Au-ZnO NPs) and phosphonate [Diethyl (3-cyano-1-hydroxy-1-phenyl-2-methylpropyl)] phosphate (PC). The mussels were exposed to concentrations of 50 and 100 µg L-1 of both compounds alone, as well as to a mixture of both pollutants (i.e. Mix). The singular and the combined effect of each pollutant was investigated by measuring the concentration of various metals (i.e., Cu, Fe, Mn, Zn and Au) in the the digestive glands and gills of mussels, their filtration capacity (FC), respiration rate (RR) and the response of oxidative biomarkers, respectively, following 14 days of exposure. The concentrations of Cu, Fe, Mn, Zn and Au increased directly with Au-ZnO NPs in mussel tissues, but significantly only for Zn. In contrast, the mixture of Au-ZnO100 NPs and PC100 did not induce any significant increase in the content of metals in digetsve glands and gills, suggesting antagonistic interactions between contaminants. In addition, FC and RR levels decreased following exposure to Au-ZnO100 NPs and PC100 treatments and no significant alterations were observed after the exposure to 50 µg.L-1 of both contaminants and Mix. Hydrogen peroxide (H2O2) level, GSH/GSSG ratio, superoxide dismutase (SOD), catalase (CAT) and acetylcholinesterase (AChE) activities showed significant changes following the exposure to both Au-ZnO NPs and PC, in the gills and the digestive glands of the mussel. However, no significant modifications were observed in both organs following the exposure to Mix. The current study advances the understanding of the toxicity of NPs and phosphonates on M. galloprovincialis and sets the path for future ecotoxicological studies regarding the synergic effects of these substances on marine species. Moreover, the current experiment suggests that the oxidative stress and the neurotoxic pathways are responsive following the exposure of marine invertebrates to both nanoparticles and phosphonates, with potential antagonist interactions of these substances on the physiology of targeted species.

9.
Mar Pollut Bull ; 169: 112556, 2021 Aug.
Article En | MEDLINE | ID: mdl-34082359

Organophosphorus derivatives are widely used in human health care and have been detected in aquatic ecosystems. These compounds may pose significant risks to non-target exposed organisms and only limited studies are available on bioconcentration and the effects of organophosphorus derivatives on marine organisms. The aim of this work was to evaluate the possible toxic effects of two concentrations (20 and 40 µg/L) of γ-oximo- and γ-amino-phosphonates and phosphine oxides in mediterranean clams Ruditapes decussatus exposed for 14 days using different biomarkers and the changes of filtration and respiration rate. The use of clams in ecotoxicity evaluation is thus mandatory to assess the feasibility of assessing oxidative stress on R. decussatus after being exposed to γ-oximo- and γ-amino-phosphonates and phosphine oxides. The oxidative status was analyzed by measuring oxidative stress biomarkers RNS and ROS production in mitochondria, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferases (GSTs), lipid peroxidation (LPO) and acetylcholinesterase (AChE), whose alteration was indicative of organophosphorus exposure, in both gills and digestive gland of the clams. No significant alterations in RNS, ROS production, SOD, CAT and AChE activities and MDA content were observed in both organs of clams treated with γ-oximophosphine oxides. It was possible then to hypothesize that γ-oximophosphine oxides may have probably exerted an incomplete alteration of antioxidant defenses and damage, which was changed by the activation of defense mechanisms. On the contrary, oxidative stress parameters were changed after exposure to γ-amino-phosphonates and phosphine oxides. In addition, metals accumulation, filtration and respiration rates were altered following exposure to all the studied organophosphorus compounds.


Bivalvia , Organophosphonates , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Catalase/metabolism , Ecosystem , Gills/chemistry , Lipid Peroxidation , Organophosphonates/metabolism , Oxidative Stress , Oxides/toxicity , Phosphines , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/analysis
10.
Environ Sci Pollut Res Int ; 28(32): 44301-44314, 2021 Aug.
Article En | MEDLINE | ID: mdl-33851291

In the present study, five NPs (containing ZnO, Au-ZnO, Cu-ZnO, TiO2, and Au-TiO2) were characterized using dynamic light scattering and transmission electron microscopy, in order to observe their behavior under environmental change. The applicability of NPs for degradation of three polycyclic aromatic hydrocarbons (PAHs), including benzo(a)pyrene, fluoranthene, and benzanthracene, using UV irradiation showed the high photocatalytic efficiency of doped NPs for the removal of the study pollutants. To predict the environmental impact and interaction between NPs and PAHs on marine organisms, Mytilus galloprovincialis mussels were exposed to concentrations of each chemical (50 and 100 µg/L) for 14 days. The mussel's response was determined using the oxidative stress biomarker approach. Measured biomarkers in the mussel's digestive gland showed possible oxidative mechanisms in a concentration-dependent manner occurring after exposure to PAHs and NPs separately. Overall, this finding provides an interesting combination to remove PAHs in water, and the incorporation of chemical element into the crystallographic structure of NPs and the combination of two different NPs to form a binary hybrid NPs are promising materials.


Mytilus , Nanoparticles , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Oxidative Stress , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
11.
Environ Pollut ; 266(Pt 1): 115263, 2020 Nov.
Article En | MEDLINE | ID: mdl-32768926

A microcosm experiment was carried out to study the ecotoxicity and interactions between heavy metals and polyvinyl chloride microplastics. Fifteen treatments were tested and results were examined after one month. In details, this work aims to study the ecotoxicological effects of cadmium (10 and 20 mg kg-1 Dry Weight DW), polyvinyl chloride (PVC) and its modified forms; PVC-DETA (PD) and PVC-TETA (PT) (20 and 40 mg kg-1 DW), separately and in mixtures, on meiofauna from Bizerte lagoon (NE Tunisia) with focus on nematode features. The results obtained showed that individual treatments were toxic for meiofauna and particularly for free-living nematodes. No clear trends characterized the numerical responses but significant reductions were observed for diversity indices. Moreover, the binary combinations of contaminants have a lesser toxic effect compared to their individual effects. This effect could be related to the high-capacity chelating ability of PVC and its polymers against cadmium.


Cadmium , Polyvinyl Chloride , Animals , Microplastics , Plastics , Tunisia
12.
Pestic Biochem Physiol ; 165: 104463, 2020 May.
Article En | MEDLINE | ID: mdl-32359554

Cypermethrin (Cyp) is a kind of pyrethroids compound that is broadly used against different species of insects and pests. Cyp can also elicit a range of neurotoxic, immunotoxic, genotoxic and reproductive toxic effects on various experimental organisms. The aim of this study was to evaluate the protective effects of Hibiscus sabdariffa against the toxicity damage induced by Cyp exposure. The Hibiscus sabdariffa calyxes extract was given to mice (200-500 mg/kg bw). The mice, which were treated with Cyp and Hibiscus sabdariffa, were divided into six groups of six mice each. Groups I, IV and VI were used as control and groups II CYP control (20 mg/kg body weight)., groups III and V were treated with Hibiscus sabdariffa extract (200 and 500 mg/kg body weight) plus (20 mg/kg body weight) for 21 days Furthermore, HPLC was used to identify the compound fraction. This result showed Cyp -induced biochemical changes in all organs of mice. Cyp caused decreased CAT activity, inhibition of AChE activity and increased the levels of H2O2 and MDA in brain, heart, liver and kidney. Hibiscus sabdariffa exhibited antioxidant effect and significantly attenuated the neurotoxicity of Cyp. Hibiscus sabdariffa exhibits neuroprotective effects and can be an effective and novel alternative approach to reduce the risk caused by pyrethroid compound.


Hibiscus , Pyrethrins , Animals , Hydrogen Peroxide , Mice , Oxidative Stress , Plant Extracts
13.
Environ Technol ; 41(28): 3745-3755, 2020 Dec.
Article En | MEDLINE | ID: mdl-31084529

A new synthetisis method of Cu-doped ZnO nanoparticles is presented in this work, this novel approach allow one to produce Zinc oxide nanocristal owing to a modified Polyol process that makes use of triethyleneglycol (TREG) as a solvent. The structure and morphology of the nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N2 adsorption study, UV-Vis diffuse reflectance spectroscopy, inductively coupled plasma optical emission spectroscopy and Raman spectroscopy. The lightly doped Zn1-xCuxO photocatalysts consisted in a novel nanorods structure of Zn0.9990Cu0.0010O nanoparticles. Taking the photocatalytic degradation of diuron under solar light as liquid phase test reaction, the lightly doped Zn0.9990Cu0.0010O nanorods photocatalysts showed strongly enhanced photocatalytic activity when compared to the bare ZnO counterpart. The apparent rate constant value of Zn0.9990Cu0.0010O was 22 times higher than that of pure ZnO. In order to study the environmental risk of Cu-ZnO, clams Ruditapes decussatus were exposed to Cu-ZnOC1 = 0.5 mg/L, Cu-ZnOC2 = 1 mg/L and Cu-ZnO C3 = 5 mg/L. Catalase (CAT) activities, malondialdehyde (MDA) content and acetylcholinesterase (AChE) activity were determined in gills and digestive gland of treated and untreated clams. Thus, no significant effects were detected in the gills of exposed clams after 7 days compared to control. Thus, MDA level and CAT activity showed significant differences in digestive glands of groups treated by the highest concentration of Cu-ZnO NPs compared to the control. No adverse effects on AChE activity was detected after Cu-ZnO NPs exposure. These results demonstrated that, although Cu-ZnO NPs is not acutely toxic to Ruditapes decussatus, it does exert oxidative stress on clams. These results are encouraging for the Cu-ZnO NPs use in variety of applications due to its high photocatalytic and low environmental toxicity.


Metal Nanoparticles , Nanotubes , Zinc Oxide , Animals , Catalysis , Gills , Metal Nanoparticles/toxicity , X-Ray Diffraction , Zinc Oxide/toxicity
14.
Aquat Toxicol ; 208: 71-79, 2019 Mar.
Article En | MEDLINE | ID: mdl-30639746

Nanoparticle decoration with noble metal represents a promising alternative to improve their photocatalytic and photovoltaic properties. However, toxicity can be influenced by such modification, as the bioavailability of these substances may be influenced. To understand how decoration influences the NP impacts in marine ecosystems, we exposed suspension-feeding clams, Ruditapes decussatus, to two photocatalyst nanocomposites, TiO2 NPs and AuTiO2 NPs, over 2 concentrations, 50 µg L-1and 100 µg L-1, in a laboratory experiment. Accumulation of Au and Ti in gills and digestive gland was noted in clams after exposure to TiO2 NPs and AuTiO2 NPs using inductively coupled plasma optic emission spectroscopy (ICP-OES). TiO2 and AuTiO2 NPs alter the behavior of the clams Ruditapes decussatus by reducing filtration and respiration rates. Furthermore, the highest concentration of TiO2NPs induces an overproduction of H2O2 in gills and digestive gland and NO production only in gills. Superoxide dismutase (SOD), Catalase (CAT), Glutathione-S-transferase (GST) and acetylcholinesterase (AChE) activities were induced in gills and digestives gland in concentration and nanocomposite type dependent manner. Decorated form presented higher Malondialdehyde (MDA) levels in gills and digestive gland than the undecorated form, suggesting different mechanisms of action that may be mediated through oxidative stress. In conclusion, the considered parameters could represent reliable biomarkers for the assessment of NP toxicity on R. decussatus as biological biomonitoring model. In addition, based on the obtained results, nanoparticle decoration influences the toxicity of metal nanoparticles in marine organism.


Behavior, Animal/drug effects , Bivalvia/metabolism , Gold/toxicity , Metal Nanoparticles/toxicity , Nanocomposites/toxicity , Titanium/toxicity , Acetylcholinesterase/metabolism , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Bivalvia/drug effects , Catalase/metabolism , Catalysis , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gills/drug effects , Gills/metabolism , Hydrogen Peroxide/metabolism , Light , Malondialdehyde/metabolism , Metal Nanoparticles/ultrastructure , Nanocomposites/ultrastructure , Neurotoxins/toxicity , Nitric Oxide/metabolism , Water Pollutants, Chemical/toxicity
15.
Aquat Toxicol ; 202: 97-104, 2018 Sep.
Article En | MEDLINE | ID: mdl-30014987

The increased use of gold nanoparticles (AuNPs) in several applications has led to a rise in concerns about their potential toxicity to aquatic organisms. In addition, toxicity of nanoparticles to aquatic organisms is related to their physical and chemical properties. In the present study, we synthesize two forms of gold octahedra nanoparticles (Au_0.03 and Au_0.045) in 1.3-propandiol with polyvinyl-pyrrolidone K30 (PVPK30) as capping agent using polyol process. Shape, size and optical properties of the particles could be tuned by changing the molar ratio of PVP K30 to metal salts. The anisotropy in nanoparticles shape shows strong localized surface plasmon resonance (SPR) in the near infrared region of the electromagnetic spectrum. Environmental impact of Oct-AuNPs was determined in the marine bivalve, Ruditapes decussatus exposed to different concentrations of Au_0.03 and Au_0.045. The dynamic light scattering showed the stability and resistance of Au_0.03 and Au_0.045 in the natural seawater. No significant modification in vg-like proteins, MDA level and enzymatic activities were observed in treated clams with Au_0.03 even at high concentration. In contrast, Au_0.045 induced superoxide dismutase (SOD), catalase (CAT), glutathione transferase (GST) activities, in a concentration dependent manner indicating defense against oxidative stress. Enhanced lipid peroxidation represented by malondialdehyde content confirmed oxidative stress of Au_0.045 at high concentration. These results highlight the importance of the physical form of nanomaterials on their interactions with marine organisms and provide a useful guideline for future use of Oct-AuNPs. In addition, Vitellogenin is shown not to be an appropriate biomarker for Oct-AuNPs contamination even at high concentration. We further show that Oct-AuNPs exhibit an important antioxidant response without inducing estrogenic disruption.


Bivalvia/drug effects , Gold/chemistry , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Bivalvia/metabolism , Catalase/metabolism , Female , Glutathione Transferase/metabolism , Hemolymph/drug effects , Hemolymph/metabolism , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Surface Plasmon Resonance , Vitellogenins/metabolism , Water Pollutants, Chemical/chemistry
16.
Bioorg Chem ; 72: 301-307, 2017 06.
Article En | MEDLINE | ID: mdl-28500956

Based on the broad spectrum of biological activities associated with organophosphates, a novel type of this class of compounds was synthesized, bearing a nitrile group, from the sodium alkoxide-catalyzed reaction of dialkylphosphites with γ-ketonitriles at 80°C under solvent-free conditions. A reaction mechanism involving a phospha-Brook type rearrangement is proposed. Eight title compounds were investigated for their in vitro inhibitory potency and selectivity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using Ellman's spectrophotometric method. The synthesized derivatives exhibited mostly a moderate activity against both cholinesterases. The IC50 values for BChE were in a smaller concentration range (5.96-23.35µM) compared to those for AChE inhibition (9.61-53.74µM). The diethyl-3-cyano-1-p-tolylpropylphosphate which displayed the higher dual inhibitory potency towards both cholinesterases could be considered as a potential candidate for developing new drugs to treat Alzheimer's disease.


Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/pharmacology , Organophosphates/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Molecular Structure , Organophosphates/chemical synthesis , Organophosphates/chemistry , Structure-Activity Relationship
17.
Aquat Toxicol ; 188: 10-19, 2017 Jul.
Article En | MEDLINE | ID: mdl-28441607

The synthesis of hybrid nanomaterials has greatly increased in recent years due to their special physical and chemical properties. However, information regarding the environmental toxicity associated with these chemicals is limited, in particular in the aquatic environment. In the present study, an experiment was performed in which the marine bivalve (Ruditapes decussatus) was exposed for 14days to 2 concentrations of zinc oxide-decorated Au nanoparticles (Au-ZnONPs: Au-ZnONP50=50µg/L; Au-ZnONP100=100µg/L). The stability and resistance of Au-ZnONPs in the natural seawater were assessed by combining transmission electron microscopy and dynamic light scattering. Inductively coupled plasma-atomic emission spectroscopy revealed uptake of these nanoparticles within clams and their ability to induce metallic deregulation. The results obtained indicate that Au-ZnONPs induce biochemical and histological alterations within either the digestive gland or gill tissues at high concentration. This was deduced from the significant increase in H2O2 level, superoxide dismutase and catalase activities and malondialdehyde content. Furthermore, the toxicity of Au-ZnO nanoparticles was linked with the increase of intracellular iron and calcium levels in both tissues. Histological alterations in gill and digestive gland were more pronounced with Au-ZnONP100 and this is likely related to oxidative mechanisms. Gill and digestive gland are differentially sensitive to Au-ZnONPs if the exposure concentration is higher than 50µg/L. In conclusion, the parameters considered here could constitute reliable biomarkers for evaluation of hybrid nanoparticles toxicity in environmental model organisms. In addition, based on the results obtained, gill and digestive gland of R. decussatus could be proposed as models to detect harmful effects of hybrid nanoparticles.


Bivalvia/drug effects , Gold/toxicity , Metal Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity , Zinc Oxide/toxicity , Animals , Biomarkers/metabolism , Bivalvia/metabolism , Catalase/metabolism , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Gills/drug effects , Gills/metabolism , Gills/pathology , Gold/chemistry , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Metal Nanoparticles/chemistry , Oxidation-Reduction , Seawater/chemistry , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry
18.
Environ Sci Process Impacts ; 18(7): 832-43, 2016 Jul 13.
Article En | MEDLINE | ID: mdl-27285609

A mesocosm experiment was conducted to evaluate the effects of Irgarol on nematode diversity, composition and trophic structure. Sediment samples were experimentally contaminated using four increasing Irgarol concentrations [I1 (11.5 ng g(-1)), I2 (35 ng g(-1)), I3 (105 ng g(-1)) and I4 (315 ng g(-1))] and compared to non-contaminated sediments (controls). Nematode diversity as the number of nematodes species (S) and species richness (d) was significantly lower in all Irgarol treatments than in the controls while the evenness (J') increased significantly in I4 treated mesocosms. The nematode species composition significantly changed following Irgarol concentrations. Paracomesoma dubiun and Terschellingia longicaudata appeared as "tolerant" species to the highest Irgarol concentration. Additionally, Chromadorina germanica and Microlaimus cyatholaimoides appeared as "opportunistic" species. In contrast, Daptonema normandicum seemed to be a "sensitive" species to Irgarol contamination. Irgarol modified also the nematode trophic structure where the relative abundance of deposit feeders decreased significantly in all the treatments compared to control mesocosms and optional predators decreased only in treated mesocosms with I3. Epigrowth feeders increased significantly in treated mesocosms with I3 and I4 and the microvores increased with I1 and decreased with I4. The relative abundance of ciliate consumers appeared unaffected by the presence of Irgarol contamination. Our results open new perspectives on the potential impact of antifouling booster biocide Irgarol 1051 on nematode biodiversity and functional diversity as trophic structures.


Disinfectants/analysis , Disinfectants/toxicity , Nematoda/drug effects , Triazines/analysis , Triazines/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug
19.
Pestic Biochem Physiol ; 129: 83-88, 2016 May.
Article En | MEDLINE | ID: mdl-27017886

Synthetic pyrethroids are a family of chiral pesticides with a large number of stereoisomers. Cypermethrin (CYP) is used in a variety of agricultural crops, but also has public health and veterinary uses. In this work, the freshwater mussel (Unio gibbus) was chosen to evaluate the stereoselectivity of CYP through the use of gas chromatography with mass-spectrometry. The effects of CYP on mussels were examined by measuring neurotoxicity and oxidative stress biomarkers during its uptake. The investigation was performed under laboratory conditions using nominal CYP concentrations C1=100 µg/L and C2=150 µg/L over 96 h. Preferential bioaccumulation of cis-CYP isomers was observed. Furthermore, enantiomeric characterization revealed enantioselective accumulation, most probably related to mussel metabolism. Antioxidant enzyme activities (superoxide dismutase (SOD), and catalase (CAT)), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were determined in digestive gland after 4 days of exposure. CYP significantly inhibited acetylcholine esterase activity, by 51% and 57%, respectively, in mussels treated with 100 and 150 µg/L doses. The highest and lowest CYP concentrations elicited an increase of 67 and 63%, respectively, in SOD activity compared to the controls, while CAT activity was increased by 65 and 73%. A statistically significant decrease in GSH levels (40%) was observed only with the highest CYP concentration tested (150 µg/L). In addition, lipid peroxidation was significantly higher (67%) than in controls. These results provided information on CYP-enantioselective uptake and potential biomarkers that could be effectively applied for the biomonitoring of freshwater ecosystem.


Bivalvia/metabolism , Pyrethrins/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Fresh Water , Stereoisomerism
20.
Environ Sci Pollut Res Int ; 23(8): 7712-21, 2016 Apr.
Article En | MEDLINE | ID: mdl-26746401

The biocide Irgarol 1051 has been reported to have negative effects on a large number of living components including non-target organisms, but information on its impact on the marine meiofauna and benthic prokaryotes is completely lacking. Here, we report the results of long-term experimental studies in which we determined the effects of increasing Irgarol concentrations (from 11.5 to 315 ng g(-1) sediment dry weight) on meiofauna and benthic prokaryotes. We found that this biocide had a significant impact on meiofauna abundance, even at the lowest concentrations, causing a drastic decline in the abundance of nematodes (the dominant meiofaunal taxon) and an increase of the relative importance of oligochaetes. Even if no direct effects of Irgarol were found on prokaryotic abundance and biomass, the molecular fingerprinting analyses (automated ribosomal intergenic spacer analysis) showed that the prokaryotic diversity was significantly altered by the biocide. The results of the present study indicate that Irgarol 1051 in marine sediments has a significant impact on the smallest eukaryotic and microbial components also at very low concentrations (ca 12 ng g(-1)).


Disinfectants/toxicity , Geologic Sediments , Nematoda/drug effects , Prokaryotic Cells/drug effects , Triazines/toxicity , Water Pollutants, Chemical/toxicity , Animals , Tunisia
...